منابع مشابه
On a Liouville-type equation with sign-changing weight
In this paper we study the existence, nonexistence and multiplicity of non-negative solutions for the family of problems −∆u = λ (a(x)e + f(x, u)), u ∈ H 0 (Ω) where Ω is a bounded domain in R2 and λ > 0 is a parameter. The coefficient a(x) is allowed to change sign. The techniques used in the proofs are a combination of upper and lower solutions, the TrudingerMoser inequality and variational m...
متن کاملInfinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.
متن کاملinfinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
in this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. we use some natural constraints and the ljusternik-schnirelman critical point theory on c1-manifolds, to prove our main results.
متن کاملLiouville Equation and Schottky Problem
An Ansatz for the Poincaré metric on compact Riemann surfaces is proposed. This implies that the Liouville equation reduces to an equation resembling a non chiral analogous of the higher genus relationships (KP equation) arising in the framework of Schottky’s problem solution. This approach connects uniformization (Fuchsian groups) and moduli space theories with KP hierarchy. Besides its mathem...
متن کاملConvergence of a Generalized Fast-Marching Method for an Eikonal Equation with a Velocity-Changing Sign
We present a new Fast Marching algorithm for an eikonal equation with a velocity changing sign. This first order equation models a front propagation in the normal direction. The algorithm is an extension of the Fast Marching Method in two respects. The first is that the new scheme can deal with a time-dependent velocity and the second is that there is no restriction on its change in sign. We an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Evolution Equations
سال: 2015
ISSN: 1424-3199,1424-3202
DOI: 10.1007/s00028-015-0283-5